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Abstract 17 

Most age-structured stock assessment models are currently based on a penalized 18 

likelihood approach.  Specification or estimation of standard deviations for randomly time-19 

varying parameters in such models has been described as one of the outstanding problems in 20 

contemporary stock assessment.  A two-step process for producing such models is assumed here, 21 

where the standard deviations are first estimated by some approach that may or may not be based 22 

on penalized likelihood, following which those estimates are treated as known constants in a 23 

model based on penalized likelihood, regardless of the approach used to obtain those estimates.  24 

Three different likelihood “approaches” for estimating the standard deviations are considered 25 

here—penalized, marginal, and restricted—each of which produces an “estimator.”  Several 26 

“methods” are presented for obtaining the various estimators, including numeric maximization, 27 

iteration, recursion, closed-form solutions, Laplace approximation, and reverse-engineering.  A 28 

linear-normal model is used as the example system throughout, because it is easy to comprehend 29 

and especially tractable.  Consideration is given to three “cases:” multivariate with time-varying 30 

observation error variance, multivariate with constant observation error variance, and univariate 31 

with constant observation error variance.  For the latter, closed-form equations for several 32 

distributions are provided, such as the probability of achieving a false positive (finding time 33 

variability where no such variability actually exists), the probability of achieving a false negative 34 

(finding no time variability where such variability actually does exist), and the relative 35 

magnitudes of the estimators conditional on achieving a false positive or not achieving a false 36 

negative.  As has been recognized previously, the penalized likelihood estimator is biased 37 

downward.  Here, a closed-form expression is provided for the relationship between the 38 

penalized likelihood and marginal likelihood estimators in the univariate case of the linear-39 
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normal model with constant observation error variance.  Although all of the estimators and 40 

methods are derived from the linear-normal model, each method’s potential for extension to 41 

nonlinear/non-normal models is also discussed. 42 

  43 
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1. Introduction 44 

It is standard practice for statistical age-structured assessments of marine fish stocks to 45 

allow at least some parameters, such as recruitment and the fishing mortality rate, to vary over 46 

time (Maunder and Punt 2013).  Time-variability in recruitment (and sometimes fishing 47 

mortality) is often modeled as a random process arising from some statistical distribution, as 48 

distinguished from estimating each annual recruitment, or fishing mortality rate, as a free 49 

parameter.  Recently, there has been increased interest in allowing other parameters to vary 50 

randomly with time as well, for example the catchability coefficient (Wilberg and Bence, 2006, 51 

Wilberg et al. 2010), selectivity parameters (Martell and Stewart 2014), the natural mortality rate 52 

(Jiao et al. 2012, Johnson et al. 2015), and growth parameters (Thorson and Minte-Vera in 53 

press).  Although some alternatives have recently been developed (e.g., Gudmundsson and 54 

Gunnlaugsson 2012, Mäntyniemi et al. 2013, Nielsen and Berg 2014), the vast majority of 55 

commonly used age-structured assessment software packages estimate randomly time-varying 56 

quantities using a “penalized likelihood” approach (defined in section 3.1 below).  Examples 57 

include: A-SCALA (Maunder and Watters 2003), AMAK (coded by James Ianelli 58 

http://nft.nefsc.noaa.gov/AMAK.html, Lowe et al. 2014), ASAP (Legault and Restrepo 1998, 59 

Legault 2012), BAM (Craig 2012, Williams and Shertzer 2015), CASAL (Bull et al. 2012), 60 

Coleraine (Hilborn et al. 2003, Magnusson and Hilborn 2007), ISCAM (Martell and Lima 2014, 61 

Martell and Stewart 2014), MULTIFAN-CL (Fournier et al. 1998, Hampton and Fournier 2001, 62 

Kleiber et al. 2012), and Stock Synthesis (Methot and Wetzel 2013). 63 

The packages listed above typically require the user to specify a standard deviation (or 64 

variance, or coefficient of variation) for each randomly time-varying parameter.  The main 65 

exception is the standard deviation of log-scale recruitment, which can be estimated internally in 66 
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a few packages, such as BAM, CASAL, and Stock Synthesis.  Either alternative (user 67 

specification or internal estimation) will cause problems if: 1) the user specifies the “wrong” 68 

value, or 2) the internal estimator is biased.  One example of the former, which is frequently of 69 

concern to stock assessment review panels, is the case where the user specifies a significant 70 

amount of time-variability in a parameter that actually should exhibit none at all 71 

(“overparameterization”).  With regard to the latter, internal estimation does not necessarily 72 

imply unbiased estimation, and some possible estimators may be preferable to others.  Overall, 73 

specification/estimation of variances for randomly time-varying parameters has proven to be a 74 

weak point in many stock assessments, leading Maunder and Piner (2015) to list this as one of 75 

the outstanding problems in contemporary fisheries stock assessment.  76 

The objective of this paper is to review some of the theory and methods dealing with this 77 

problem.  Because terminology in this area of research can be confusing, care will be taken to 78 

show how the various estimators relate to one another, building upon previous systematizations 79 

such as that of Thorson et al. (2015).  A linear-normal model (defined in section 2.2 below) will 80 

be used as the example system throughout, because it is easy to comprehend and especially 81 

tractable. 82 

2. Preliminaries 83 

2.1. Notation and frequently used functions 84 

The following notational conventions will be observed: 85 

• Functions, random variables, and integer constants are denoted by Roman letters (Table 86 

1a); parameters and non-integer constants by Greek letters (Table 1b) 87 

• Vectors and matrices are denoted by bold font; scalars by italic font 88 

• Scalars and vectors are shown in lower case; matrices upper case 89 
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• Example: wi represents element i of vector w 90 

• Example: wi,j represents element {i,j} of matrix W 91 

• Example: wj represents column j of matrix W 92 

• Example: Wi represents element i of a vector of matrices 93 

• I(n) represents the n×n identity matrix 94 

• z(n) represents the n×1 vector of zeros 95 

Exceptions to the above conventions include commonly used function names such as 96 

ln(⋅), diag(⋅), and Γ(⋅), which will be written in regular (non-italic) font. 97 

Both multivariate and univariate cases will be considered in this paper.  Names and 98 

definitions of statistical function definitions for the multivariate case include the following: 99 

• Log of multivariate normal probability density function fmul for n-dimensional random 100 

variable w with n×1 mean vector µ and n×n covariance matrix Σ: 101 

( )( ) ( ) ( ) ( ) ( )
.

2

ln2ln
,ln

1
µwΣµwΣ

Σµw
−⋅⋅′−++⋅⋅

−=
−πn

fmul  102 

• Vector of row means of n×n matrix W: 103 
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• Row-wise covariance matrix of n×n matrix W: 105 

Vh(W), where each element {i=1,2,…,n; j=1,2,…,n} takes the form  
106 
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 and where 0 and 1 are conventional values for h. 108 
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Analogues of the above for the univariate case are as follow:
 

109 

• Log of univariate normal probability density function funi for scalar random variable w 110 

with scalar mean µ and scalar variance σ 2: 111 
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• Scalar mean of n×1 vector w: 113 

.
1

)(
1
∑⋅







=
=

n

i
iw

n
m w  114 

• Scalar variance of n×1 vector w: 115 
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2.2. The linear-normal model 117 

Although more general forms can be imagined (e.g., Laird and Ware 1982), the following 118 

version of the linear-normal model will be sufficiently general for the purposes of this paper: 119 

• X is an nfac×nobs variable matrix 120 

• ζ is an ndim×1 constant vector 121 

• Ω is an nfac×ndim  constant (“design”) matrix 122 

• For each k=1,2,…,nobs, yk (a column of the ndim×nobs matrix Y) is an ndim×1 123 

vector related to xk (a column of the ndim×nobs matrix X) by yk = ζ+Ω′⋅xk 124 

• For each k=1,2,…,nobs, the observed value of yk, yobsk (a column of the ndim×nobs 125 

matrix Yobs), is an ndim×1 vector related to yk by yobsk = yk+εk, where εk  (a column 126 

of the ndim×nobs matrix Ε) is a multivariate normal random variable with ndim×1 127 
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mean vector z(ndim) and ndim×ndim covariance matrix Σεk (assumed known unless 128 

otherwise specified). 129 

Now, suppose that the value of each xk is unknown (or, worse, that even the identities of 130 

the nfac scalar variables comprising each vector xk are unknown), or that the value of each xk is 131 

known, but is simply a single realization of a large population of potential xk values.  In such 132 

cases, it is appropriate to view each xk as a random vector.  For simplicity, it will be assumed 133 

throughout this paper that these random vectors are multivariate normal, with constant mean 134 

vector µx and constant covariance matrix Σx, in which case the following conditions hold: 135 

• Each yk is multivariate normally distributed with mean µy = ζ+Ω′⋅µx and covariance 136 

matrix Σy = Ω′⋅Σx⋅Ω.   137 

• Each yobsk is multivariate normally distributed with mean µy and covariance matrix 138 

Σεk+Σy. 139 

For each k=1,2,…,n, a vector of deviations, δk (a column of the ndim×nobs matrix ∆), 140 

will be defined as the difference between yk and µy.  Each δk can be thought of as a vector of 141 

random effects, because they are multivariate random variables, while µy can be thought of as a 142 

vector of fixed effects, because it is a constant (e.g., Davidian and Giltinan 2003).  Because δk 143 

and yk differ by only an additive constant, δk has the same covariance matrix as yk.  Even though 144 

the covariance matrices are the same, it will be convenient to add the redundant symbol Σδ (=Σy) 145 

to emphasize the fact that this matrix is independent of the fixed effects.  Because the ndim×ndim 146 

matrix Σδ is symmetric, it involves only ndim×(ndim+1)/2 parameters.  To emphasize this fact, it 147 

will  typically be written as Σδ(σδ,ρδ), where σδ is an ndim×1 constant vector of standard 148 

deviations and ρδ is an ndim×(ndim−1)/2 constant vector of correlation coefficients. 149 
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2.3. Structure of the presentation 150 

A two-step process for producing stock assessment models is assumed here, where σδ 151 

and ρδ are first estimated by some approach that may or may not be based on penalized 152 

likelihood, following which those estimates are treated as known constants in a model based on 153 

penalized likelihood, regardless of the approach used to obtain those estimates.  Three different 154 

likelihood “approaches” for estimating the standard deviations are considered here—penalized, 155 

marginal, and restricted—each of which produces an “estimator.”  Several “methods” are 156 

presented for obtaining the various estimators, including numeric maximization, iteration, 157 

recursion, closed-form solutions, Laplace approximation, and reverse-engineering.  158 

Consideration is given to three “cases:” multivariate with time-varying observation error 159 

variance (i.e., the general case described in the preceding section), multivariate with constant 160 

observation error variance, and univariate with constant observation error variance.  The 161 

approaches/estimators, methods, and cases are summarized in Table 2. 162 

Equations and algorithms that are referenced subsequently in the document are numbered 163 

sequentially as they are introduced, except that equations and algorithms corresponding to the 164 

multivariate case with time-varying observation error variance have numbers of the form “x,” 165 

equations and algorithms for the multivariate case with constant observation error variance have 166 

numbers of the form “x.1,” and equations and algorithms for the univariate case with constant 167 

observation error variance is have numbers of the form “x.2.”   168 

3. Developing the likelihoods 169 

3.1. Penalized likelihood approach 170 

The log joint likelihood of µy and ∆, conditional on Yobs, may be written as 171 
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Note that there are more parameters (ndim×(nobs+1)) than data (ndim×nobs)  in the 173 

above, meaning that there are an infinite number of estimates that maximize the likelihood, each 174 

of which results in a perfect fit to the data.  In order to obtain a unique solution, and to allow for 175 

the existence of observation error, it is necessary to constrain the parameters somehow.  A 176 

common approach is to add a penalty term to the log joint likelihood, typically taking the form 177 

shown below: 178 

( )( )( ).,),(ln),(
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nobs

k
kmul ndimfpen ρδσδΣδzδρδσδ∆  179 

Although exp(pen) has the form of a joint probability density function of ∆, it can be 180 

interpreted in at least two different ways:  If σδ and ρδ represent parameters describing the 181 

modeler’s subjective prior belief about the joint distribution of the elements of ∆, then exp(pen) 182 

is properly interpreted as a joint prior distribution, in which case the data (Yobs) should not be 183 

used to estimate the values of σδ and ρδ (i.e., σδ and ρδ are simply the constants that 184 

characterize the uncertainty associated with the modeler’s subjective prior belief).  More 185 

commonly, though, exp(pen) is treated as though it represents an actual mechanism; specifically, 186 

a stochastic process that gives rise to the elements of ∆, conditional on exp(lik jnt).  In this second 187 

interpretation of exp(pen), which is the interpretation that will be assumed here, it is proper to 188 

use the data to estimate the values of σδ and ρδ.  Note that exp(pen) cannot be interpreted as a 189 

likelihood, because it does not contain any data. 190 

Summing ln(lik jnt) and pen gives the penalized log likelihood:  191 
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The parameters to be estimated are µy, ∆, σδ, and ρδ. 193 

Taking the partial derivative of Eq. (1) with respect to each element of µy gives   194 
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implying that the conditional (on ∆) maximum likelihood estimate (MLE) of µy when using the 196 

penalized likelihood is 197 
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(Note that σδ and ρδ do not appear in Eq. (2).) 199 

The vector of partial derivatives of Eq. (1) taken with respect to the elements of each δk is 200 

( ) ( )( ) kkkk δρδσδΣδΣεµyyobsΣε ⋅+−−⋅ −−− 111 , ,  201 

implying that the conditional (on µy, given σδ and ρδ) MLE of each δk when using the penalized 202 

likelihood is  203 

( ) ( )( ) ( ) )3(.,,),( 1
, µyyobsρδσδΣδΣερδσδΣδρδσδµyδ −⋅+⋅= −

kkkconpen  204 

(Note that, unlike Eq. (2), σδ and ρδ do appear in Eq. (3).) 205 

Solving Eq. (2) and Eq. (3) simultaneously gives  206 
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and  208 
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The MLE of y, using the penalized likelihood, is therefore:  210 
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For a scalar multiplier φ, the following limiting case is of special interest: 212 
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The above special case is equivalent to estimating each element of ∆ as a free parameter. 214 

Substituting µypen and ∆pen(σδ, ρδ) for µy and ∆ in Eq. (1) gives the penalized log 215 

likelihood profile in σδ and ρδ: 216 

( ) ( )( )
( )( )

( ) ( ) )6(.
),(lnln

),(ln)2ln(

2

1

),(),,(ln),(ln

11

1
,

















∑ +−∑+

+⋅⋅⋅
⋅






−

∑ +=

==

=

nobs

k
k

nobs

k
k

nobs

k
kpenkmulpropen

ndimnobs

flik

ρδσδΣδΣεΣε

ρδσδΣδ

ρδσδΣδΣερδσδµyyobsYobsρδσδ

π  217 

3.1.1. Special case: multivariate with constant observation error covariance 218 

Some of the equations pertaining to the general case remain the same for this special case 219 

except for removing the subscript k from the observation error covariance matrix.  Some other 220 

equations, however, are simplified significantly.  Two of these are shown below: 221 

Eq. (4) becomes 222 

)1.4()(Yobsmµy =pen  223 

and Eq. (6) becomes 224 
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3.1.2. Special case: univariate with constant observation error variance 226 

In the univariate (ndim=1) case, Yobs and ∆ are replaced by nobs×1 vectors yobs and δ, 227 

respectively; and the Σε and Σδ matrices are replaced by the scalars σε 2 and σδ 2, respectively.  228 

Then, Eq. (4) becomes 229 

)2.4()(yobsmµypen =  230 

and Eq. (6) becomes 231 
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3.2. Marginal likelihood approach 233 

Unless the dimensions of the problem are very small, there are typically a large number 234 

of possible marginal likelihoods associated with the penalized likelihood, depending on which 235 

parameters are integrated out.  For the purposes of this paper, the term “marginal likelihood” will 236 

be used to describe the penalized likelihood with only the random effects (∆) integrated out. 237 

Note that the penalized log likelihood (Eq. (1)) can be rewritten as follows: 238 
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In the above, note that the random effects δk (k=1,2,…,nobs) do not appear anywhere in the first 240 

line of the right-hand side, and they appear only as the variables in a set of multivariate normal 241 

distributions in the second line.  They can therefore be integrated out of likpen, leaving the 242 

following as the log marginal likelihood: 243 
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 Differentiating the above with respect to the elements of µy shows that the MLE in the 245 

penalized likelihood approach (Eq. (4)) is also the MLE in the marginal likelihood approach.  246 

The corresponding log marginal likelihood profile is thus:  247 
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3.2.1. Special case: multivariate with constant observation error covariance 249 

 The equations for this special case are the same as for the general case, except for 250 

deletion of the subscript k from Σε and use of Eq. (4.1) to represent the MLE of µy rather than 251 

Eq. (4).  So, ln(likmar) becomes 252 
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and ln(likmar,pro) becomes254 
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3.2.2. Special case: univariate with constant observation error variance 256 

The univariate form of ln(likmar) is given by  257 
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and the univariate form of ln(likmar,pro) is given by  259 
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3.3. Restricted likelihood approach 261 

The restricted likelihood approach was originally formulated in terms of “error contrasts” 262 

(Patterson and Thompson 1971).  However, Harville (1974, 1977) showed that a Bayesian 263 

interpretation is also possible, by imposing a uniform improper prior on the fixed effects (here, 264 

µy) and integrating them out of the marginal likelihood (see Laird and Ware (1982) for a similar 265 

exposition).  Because an analogous procedure was used to obtain the marginal likelihood in Eq. 266 

(7), Harville’s interpretation will be employed here, to clarify the relationship between the 267 

marginal and restricted likelihood approaches (viz., marginal ≡ only random effects integrated 268 

out, whereas restricted ≡ mixed effects (i.e., both random and fixed effects) integrated out). 269 

The log marginal likelihood (Eq. (7)) can be rewritten as follows:  270 
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 271 

In the right-hand side of the above, the third line takes the form of the log of a 272 

multivariate normal distribution in µy.  Because µy does not appear anywhere in the first two 273 

lines and appears only as the variable in the third line, it can be integrated out of likmar, leaving 274 

the following: 275 
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3.3.1. Special case: multivariate with constant observation error covariance 277 

 In this special case, ln(likres) becomes 278 
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3.3.2. Special case: univariate with constant observation error variance 280 

In this special case, ln(likres) becomes: 281 
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4. Maximizing the likelihoods 283 

 Except in some special cases, closed-form solutions to the MLEs for σδ and ρδ do not 284 

exist for any of the three objective functions (penalized log likelihood profile, Eq. (1); log 285 

marginal likelihood profile, Eq. (8); and log restricted likelihood, Eq. (9)).  Numerical solutions 286 

are possible, however, at least in principle.  Also, for each of the three likelihoods, an iterative 287 

algorithm for obtaining the MLE is available.  The iterative algorithm for each likelihood is 288 

described in the respective subsection below, along with closed-form solutions for some special 289 

cases of particular interest. 290 

4.1. Penalized likelihood approach 291 

 An iterative method for maximizing Eq. (6) proceeds as shown in the text box labeled 292 

“Algorithm 1.”  Algorithm 1 will result in an estimate regardless of whether an interior mode 293 

exists in all dimensions, but if an interior mode does not exist in some dimension(s), the 294 
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corresponding element(s) in the estimate of σδ will be zero.  The rank of the estimate of 295 

Σδ(σδ,ρδ) obtained by iteration will equal the number of interior modes. 296 

4.1.1. Special case: multivariate with constant observation error covariance 297 

Two additional approaches are available for the special case in which Σε is constant. 298 

 A recursive method for maximizing Eq. (6.1) proceeds as shown in the text box labeled 299 

“Algorithm 2.1.”  If the recursive approach fails, it is because an interior mode does not exist in 300 

one or more dimensions, which causes the estimate of Σδ to be singular, meaning that the 301 

inversion on the right-hand side of the equation in step 2 cannot be computed.   302 

At equilibrium, the equation in step 2 of the recursive approach can be rearranged to give 303 

the symmetric algebraic Riccati equation 304 

)1.10(,)(0 ndimIΦ3Φ2ΣδΣδ2ΦΣδΦ1Σδ ⋅=+⋅+⋅′+⋅⋅  305 

where ΣεΦ3YobsVΣεIΦ2ΣεΦ1 =⋅−== −− and,2)()(, 0
11 ndim .  A method for solving this 306 

equation proceeds as shown in the text box labeled “Algorithm 3.1.”  If an interior mode does 307 

not exist in all dimensions, some of the eigenvalues of the Hamiltonian in the Riccati approach 308 

will be imaginary.  The number of dimensions for which an interior mode exists will be equal to 309 

one-half the number of real eigenvalues. 310 

4.1.2. Special case: univariate with constant observation error variance 311 

In this special case, the symmetric algebraic Riccati equation reduces to 312 

)2.10(,03221 24 =+⋅⋅+⋅ φσδφσδφ  313 

where 2
0

22 3and,2)(12,1 σεφσεφσεφ =⋅−== −− yobsv .  The roots of Eq. (10.2) are easier to 314 

understand in terms of the derivative of the log penalized likelihood profile (Eq. (6.2)) with 315 

respect to σδ: 316 
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317 

Eq. (10.2) has either four real or four complex roots.  In the event that the roots are real, 318 

two of them will be positive, which will correspond to a local minimum and local maximum of 319 

Eq. (6.2).  Specifically, if v0(yobs)>4⋅σε 2, the penalized likelihood profile has a global 320 

maximum at 0, a local minimum at 
2

4)()( 2
00 σε⋅−− yobsyobs vv

, and a local maximum at 321 

)2.11(.
2

4)()( 2
00 σε

σδ
⋅−+

=
yobsyobs vv

pen .   322 

Eq. (11.2) will be taken to represent the MLE for the penalized likelihood profile, even though it 323 

represents only a local maximum, and then only when the result is a real number.  In the event 324 

that v0(yobs)<4⋅σε 2, the local extrema disappear, and σδpen=0. 325 

4.2. Marginal likelihood approach 326 

 The iterative algorithm for maximizing Eq. (8) involves first computing a pair of 327 

matrices, the second of which is a function of the first.  The first of these two matrices is the 328 

Hessian matrix corresponding to random effects (∆) only.  For the linear-normal model, this 329 

matrix, Λran(σδ,ρδ), has elements {nobs⋅(i−1)+k, nobs⋅(j−1)+k } equal to elements {i,j} of the 330 

matrix ( ) ,),( 11 −− −− kΣερδσδΣδ for all i=1,2,…,ndim, j=1,2,…,ndim, and k=1,2,…,nobs; with 331 

all other elements zero.  The second matrix, Σaveran(σδ,ρδ), is an ndim×ndim matrix whose 332 

elements are averages, across observations, of the corresponding elements of −Λran(σδ,ρδ)−1 .  333 

That is, element {i,j} of Σaveran(σδ,ρδ) is the average, across k, of elements {nobs⋅(i−1)+k, 334 

nobs⋅(j−1)+k } of the matrix −Λran(σδ,ρδ)−1.  The iteration proceeds as shown in the text box 335 
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labeled “Algorithm 4.”  In the event that the true MLE of Σδ is not positive-definite, this 336 

algorithm will not converge to the true MLE exactly.  However, the resulting estimate will be 337 

positive-definite, and personal experience to date suggests that the resulting estimate will be 338 

close to the true MLE. 339 

4.2.1. Special case: multivariate with constant observation error covariance 340 

In this special case, the MLEs of σδ and ρδ are obtainable in closed form, because Eq. 341 

(8.1) is simply the product of multivariate normal probability density functions, all with the same 342 

variance.  The MLEs can be extracted from the following equation: 343 

( ) )1.12(.),( 0 ΣεYobsVρδσδΣδ −=marmar  344 

The above is a fairly intuitive estimator.  By adding Σε to both sides of the equation, it implies 345 

that, in expectation, the covariance matrix of the observed values is equal to the covariance 346 

matrix of the true values (remembering that the covariance matrices of Y and ∆ are the same) 347 

plus the covariance matrix of the observation errors. 348 

4.2.2. Special case: univariate with constant observation error variance 349 

 Similarly, in this special case, the MLE corresponding to Eq. (8.2) is: 350 

)2.12(.)( 2
0 σεσδ −= yobsvmar  351 

It can be shown that σδmar is always greater than σδpen (as given by Eq. (11.2)) if v0(yobs)>σε 2. 352 

For the univariate case with constant σε, one of the methods described by Methot and 353 

Taylor (2011) provides a spectrum of σδ estimators, two special cases of which correspond to 354 

the penalized likelihood solution (Eq. (11.2)) and marginal likelihood solution (Eq. (12.2)) given 355 

here.  Methot and Taylor suggest incorporating a “bias adjustment” term into the penalty 356 
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function, which can be written, using somewhat different notation than that of the authors (and 357 

correcting a minor typographical error) as: 358 
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359 

where α is the amount of adjustment.  Three differences from the approach of Methot and Taylor 360 

should be noted:  1) The objective function used here is intended to be maximized, whereas the 361 

objective function of Methot and Taylor is intended to be minimized.  2) The bias adjustment 362 

used here (α) is equivalent to 1 minus the bias adjustment described by Methot and Taylor.  3) 363 

Although constant σε is assumed for this comparison, the method of Methot and Taylor is not 364 

restricted to this special case, so their bias adjustment would normally be subscripted by year.   365 

Including the adjustment term α in the penalty function has no impact on the penalized 366 

likelihood estimators of µy or δ, but the derivative of the bias-adjusted log penalized likelihood 367 

profile with respect to σδ is (cf. the derivative shown in section 4.1.2): 368 
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which, if v0(yobs)>4⋅(1−α)⋅σε 2, implies that the bias-adjusted penalized log likelihood profile 370 

has a local minimum at 371 

α
σεα

−⋅
⋅−⋅−−

12

)1(4)()( 2
00 yobsyobs vv

 372 

and a local maximum at 373 
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In the special case where α=0 (i.e., no bias adjustment), the local maximum corresponds 375 

to σδpen, and in the special case where α=σε 2/v0(yobs), the local maximum corresponds to σδmar.  376 

The value of α yielding σδmar is asymptotically equal to 1 minus the optimal bias adjustment 377 

reported by Methot and Taylor (for the constant-σε case). 378 

4.3. Restricted likelihood approach 379 

 The iterative algorithm for maximizing Eq. (9) is completely analogous to that used for 380 

the marginal likelihood, except that the Hessian matrix involving mixed effects (i.e., both ∆ and 381 

µy) is used instead of the Hessian matrix involving random effects (∆) only.  For the linear-382 

normal model, the mixed-effects Hessian matrix, Λmix(σδ,ρδ), is an 383 

ndim⋅(nobs+1)×ndim⋅(nobs+1) symmetric matrix, which can be constructed as follows: 384 

• The upper-left ndim⋅nobs×ndim⋅nobs submatrix is identical to Λran(σδ,ρδ). 385 

• Elements {nobs⋅ndim+i, nobs⋅(j−1)+k} are equal to elements {i,j} of the matrix386 

( ) ,1−− kΣε for all i=1,2,…,ndim, j=1,2,…,ndim, and k=1,2,…,nobs. 387 

• Elements {nobs⋅(j−1)+k, nobs⋅ndim+i} are equal to elements {j,i} of the matrix388 

( ) ,1−− kΣε for all i=1,2,…,ndim, j=1,2,…,ndim, and k=1,2,…,nobs. 389 

• Elements {nobs⋅ndim+i, nobs⋅ndim+j} are equal to elements {i,j} of the matrix390 

( ) ,
1

1
∑−
=

−nobs

k
kΣε for all i=1,2,…,ndim and j=1,2,…,ndim.  391 

The restricted likelihood version of the matrix Σavemix(σδ,ρδ) is constructed identically to its 392 

marginal likelihood counterpart, except that the averages are taken with respect to the elements 393 
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of −Λmix(σδ,ρδ)−1  rather than the elements of −Λran(σδ,ρδ)−1.  The iteration proceeds as shown 394 

in the text box labeled “Algorithm 5,” which is identical to Algorithm 4 except that Σavemix is 395 

substituted for Σaveran in step 2.  As with the marginal likelihood approach, if the true MLE of 396 

Σδ is not positive-definite, this algorithm will not converge to the true MLE exactly.  However, 397 

the resulting estimate will be positive-definite, and personal experience to date suggests that the 398 

resulting estimate will be close to the true MLE. 399 

In the article by Methot and Taylor (2011), the third method described on page 1749 400 

(after correcting another minor typographical error) is basically the univariate special case of 401 

Algorithm 5, except that their method uses bisection in order to speed convergence. 402 

4.3.1. Special case: multivariate with constant observation error covariance 403 

The MLEs corresponding to Eq. (9.1) are identical to their marginal likelihood 404 

counterparts, except that nobs−1 is used to scale the observation covariance rather than nobs: 405 

)1.13(.)(),( 1 ΣεYobsVρδσδΣδ resres −=  406 

4.3.2. Special case: univariate with constant observation error variance 407 

The MLE corresponding to Eq. (9.2) is computed similarly: 408 

)2.13(.)( 2
1 σεσδ −= yobsvres  409 

5. Alternative formulations of the estimators 410 

5.1. Laplace approximation 411 

For models other than the multivariate normal model, computing the values of likmar and 412 

likres exactly can be cumbersome, because integrating out ∆, or ∆ and µy, may not yield a closed-413 

form solution for the respective likelihood.  For such models, approximations to likmar and likres 414 

based on Laplace’s method have been proposed (e.g., Thorson et al. 2015).  These involve 415 
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adjusting the log penalized likelihood profile by a linear function of the log of the determinant of 416 

the appropriate Hessian matrix, which is then maximized numerically.  Although the objective 417 

functions obtained by these methods are only approximate for non-normal models, they are exact 418 

for normal models. 419 

5.1.1. Laplace approximation based on random effects only 420 

For the linear-normal model, the log of the determinant of Λran is 421 
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and the log of the marginal likelihood profile likmar,pro (Eq. (8)) can be rewritten as 423 
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5.1.2. Laplace approximation based on mixed effects 425 

For the linear-normal model, the log of the determinant of Λmix is 426 
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and the log of the restricted likelihood likres (Eq. (9)) can be rewritten as: 428 
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The objective function proposed by Thorson et al. (2015) is of the same type as Eq. (15). 430 

5.2. Reverse-engineering the “known” variances in the univariate case with constant σε 431 

For the univariate case with constant σε, it has so far been assumed that the value of σε is 432 

known.  In fact, Eqs. (11.2), (12.2), and (13.2) would seem to suggest that this assumption is 433 
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necessary for estimation of σδpen, σδmar, or σδres.  Indeed, some quantities of interest (i.e., things 434 

that might be represented by yobs here) lend themselves to measurement by statistically 435 

designed field experiments where the quantity is observed directly and from which estimates of 436 

σε can be obtained, in which case the assumption that σε is known seems reasonable.  Other 437 

quantities of interest, however, such as annual deviations associated with a parameter in a 438 

selectivity function, do not, as such quantities are not observed directly and estimates of 439 

precision do not arise naturally as a result of sampling design.   440 

In the event that the value of σε is unknown, it can be reverse-engineered by exploiting 441 

the fact that, just as in the multivariate case, the value of σδpen can be obtained by iteration 442 

(moreover, convergence of Algorithm 1 is easy to prove for the univariate case).  Then, the value 443 

of σε can be obtained from v0(yobs) and σδpen by solving Eq. (11.2) for σε as follows: 444 

( ) )2.16(.)(0 penpen v σδσδσε −⋅= yobs
 

445 

However, if a quantity is not observed directly (again, selectivity parameters are good 446 

examples), not only is it likely that σε will be unknown, but it is also likely that the value of 447 

v0(yobs) will be unknown as well, in which case Eq. (16.2) would still not appear to solve the 448 

problem of unknown σε.  Fortunately, the value of v0(yobs) itself can also be reverse-engineered, 449 

by exploiting the following facts:  1) the univariate form of Eq. (5) implies that, as σδ 450 

approaches infinity, yobs is equal to the penalized likelihood estimate of y; and 2) the variance 451 

of y is the same as the variance of δ.   452 

The purpose of reverse-engineering the values of σε and v0(yobs), of course, is to enable 453 

their use in estimating σδmar or σδres by Eq. 12.2 or Eq 13.2 (recalling for the latter that 454 
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v1(yobs)=v0(yobs)⋅nobs/(nobs−1)).  The methods proceed as shown in the text boxes labeled 455 

“Algorithm 6.2” and “Algorithm 7.2,” respectively. 456 

6. Distributions of the closed-form univariate estimators with constant σε 457 

 Closed-form distributions exist for many aspects of the univariate estimators in the linear-458 

normal model with constant observation error variance.  These can be derived by exploiting the 459 

fact that the sample variance of a normal random variable is proportional to a χ 2 random 460 

variable.  Throughout this section, the following conventions are observed: 461 

• The parameter β represents the ratio σε/σδ  (note that the denominator here is the true 462 

value, not the estimated value). 463 

• The parameter c is a multiplier applied to σε 2 (or β 2).  Although in principle c could take 464 

any real value, in practice it is restricted to the values 1 and 4. 465 

o For distributions related to the penalized likelihood estimator (Eq. (11.2)), c=4. 466 

o For distributions related to the marginal or restricted likelihood estimators (Eqs. 467 

(12.2) and (13.2)), c=1 corresponds to the case where σε is known, and c=4 468 

corresponds to the case where σε is unknown, in which case Algorithm 6.2 or 7.2 469 

is used to reverse-engineer the unknown value. 470 

• The parameter h has the interpretation implied by the variance operator vh(⋅). 471 

6.1. Probability of obtaining a false positive 472 

As noted in section 1, overparameterization is a common concern of stock assessment 473 

review panels.  In the present context, overparameterization results when the estimated value of 474 

σδ is positive even though the true value of σδ is zero; that is, the estimate is a “false positive.”  475 
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In the univariate linear-normal model with constant observation error variance, the cumulative 476 

probability of obtaining a false positive is: 477 

( )( ) ,1(1),,(_ −−⋅−= nobshnobscgnobshcposfalse   478 

where g(w|d) is the χ 2 cumulative distribution function evaluated at w with d degrees of 479 

freedom.  Examples are shown in Figure 1.  Note that the probability of obtaining a false positive 480 

is less than 0.5% for the penalized likelihood approach (c=4, h=0) at all values of nobs>1.  In 481 

contrast, if the value of σε is known, the probability of obtaining a false positive for the marginal 482 

likelihood approach (c=1, h=0) ranges from ∼0.32 at nobs=2 to 0.5 as nobs approaches infinity; 483 

while the probability of obtaining a false positive for the restricted likelihood approach (c=1, 484 

h=1) ranges from ∼0.16 at nobs=2 to 0.5 as nobs approaches infinity. 485 

6.2. Probability of obtaining a false negative 486 

  The opposite problem, underparameterization, results when the estimated value of σδ is 487 

zero even though the true value of σδ is positive; that is, the estimate is a “false negative.”  The 488 

cumulative probability of obtaining a false negative is: 489 
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Examples are shown in Figure 2 (Figure 2a shows the probability as a function of β for various 491 

values of nobs, while Figure 2b shows the probability as a function of nobs for various values of 492 

β).  Note that the probability of obtaining a false negative in the penalized likelihood approach 493 

can be fairly high under certain combinations of nobs and β values.  For example, for all values 494 

of 31>β , the probability of obtaining a false negative under the penalized likelihood 495 

approach is greater than 50% for all values of nobs>1.  On the other hand, the probability of 496 
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obtaining a false negative under the marginal or restricted likelihood approaches is fairly low 497 

under a very wide range of nobs and β  values.  For all estimators, the probability of obtaining a 498 

false negative varies inversely with β (i.e., the smaller the relative value of σε, the less likely it is 499 

to mask the signal provided by σδ).  For the marginal likelihood and restricted likelihood 500 

estimators, the probability of obtaining a false negative also varies inversely with nobs.  For the 501 

penalized likelihood approach, the relationship varies inversely with nobs for 31<β , directly 502 

for 59.1~>β , and non-monotonically for 59.1~31 << β .   503 

6.3. Distribution of the estimators, given presence of a false positive 504 

Given that there is some probability of obtaining a false positive, particularly under the 505 

marginal likelihood and restricted likelihood approaches, it is natural to wonder how large those 506 

false positive values might be (e.g., if they are likely to be extremely small, their existence is 507 

unlikely to cause much of a problem).  Let uε represent the ratio of the estimator (either σδpen, 508 

σδmar, or σδres) to σε.  Then, for i=1,2, define a probability density function of the form 509 
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Important special cases of the functions a1 and a2 include the following:  By setting c=4 513 

and h=0, the function a1 gives the distribution of σδpen /σε, conditional on obtaining a false 514 
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positive, and has range ( )∞,1 .  The function a2 gives the distribution of σδmar /σε (obtained by 515 

setting h=0) or σδres /σε (obtained by setting h=1), either with σε  known (obtained by setting 516 

c=1) or unknown and therefore reverse-engineered (obtained by setting c=4), conditional on 517 

obtaining a false positive, and has range ( )∞− ,1c . 518 

Figure 3a shows examples of a1 with h=0 (upper two panels, corresponding to the 519 

penalized likelihood approach), a2 with h=0 (middle two panels, corresponding to the marginal 520 

likelihood approach), and a2 with h=1 (bottom two panels, corresponding to the restricted 521 

likelihood approach).  The left-hand column of Figure 3a corresponds to the case in which σε is 522 

unknown (c=4), and the right-hand column corresponds to the case in which σε is known (c=1).  523 

Note that the results for the penalized likelihood approach do not differ for these two cases, so 524 

the top two panels are identical.  The lower bound of uε is unity for the penalized likelihood 525 

approach, 3  for the marginal and restricted likelihood approaches when σε is unknown, and 526 

zero for the marginal and restricted likelihood approaches when σε is known. 527 

Figure 3b shows two statistics associated with the probability density functions a1 and a2, 528 

both plotted as functions of nobs.  It is important to remember that these statistics are conditional 529 

on the existence of a false positive, the probability of which varies by estimator (Figure 1) and 530 

may be very low (e.g., for the penalized likelihood estimator).  The upper panel of Figure 3b 531 

shows the cumulative probability that uε takes a value less than or equal to unity (function a2 532 

only, because this cumulative probability is essentially zero for function a1), while the lower 533 

panel shows the means of the distributions.  The upper panel of Figure 3b shows that false 534 

positive estimates of σδ are likely to be smaller than σε for both the marginal and restricted 535 

likelihood approaches, with the probability being somewhat higher for the restricted likelihood 536 
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approach.  The lower panel of Figure 3b shows that the mean false positive estimate (relative to 537 

σε) is greater than unity for all three approaches when σε is unknown, but less than unity for the 538 

marginal and restricted likelihood approaches when σε is known (the only exception being 539 

nobs=2 in the restricted likelihood approach, where the mean is 1.08). 540 

6.4. Distribution of the estimators, given absence of a false negative 541 

If a false negative is obtained, none of the estimators has a distribution, being identically 542 

zero by definition.  However, it is natural to wonder about the distributions of the estimators in 543 

the event that a false negative is not obtained.  These distributions are slightly more complicated 544 

than those for the distributions of the false positives, because they depend on β (which functions 545 

as a scale parameter) in addition to nobs.  Let uδ represent the ratio of the estimator (either σδpen, 546 

σδmar, or σδres) to the true value of σδ.  Again letting i=1,2, define a probability density function 547 

of the form
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The function b1 gives the distribution of σδpen /σδ (obtained by setting c=4 and h=0), conditional 552 

on not obtaining a false negative, and has range ( )∞,β .  The function b2 gives the distribution of 553 

σδmar /σδ (obtained by setting h=0) or σδres /σδ (obtained by setting h=1), either with σε  known 554 
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(obtained by setting c=1) or unknown and therefore reverse-engineered (obtained by setting 555 

c=4), again conditional on not obtaining a false negative, and has range ( )∞⋅− ,1 βc . 556 

Figure 4a is structured similarly to Figure 3a, showing examples of b1 (penalized 557 

likelihood approach, top two panels) and b2 (marginal and restricted likelihood approaches, 558 

middle and bottom two panels, respectively), both when σε is unknown (left column) and known 559 

(right column).  The four curves in each panel of Figure 4a correspond to a 2×2 factorial design 560 

of the parameters nobs=10,20 and β=0.2,0.4.  The lower bound of uδ is β for the penalized 561 

likelihood approach, β3  for the marginal and restricted likelihood approaches when σε is 562 

unknown, and zero for the marginal and restricted likelihood approaches when σε is known. 563 

Figure 4b shows the cumulative probability that uδ takes a value less than or equal to 564 

unity, plotted as a function of nobs, for β=0.1,0.2,0.3,0.4.  The lower limit of uδ in each panel is 565 

log10(2).  Figure 4c is analogous, except plotted as a function of β, for nobs=10,20,30,40.  The 566 

upper limit of uδ for the marginal and restricted likelihood approaches when σε is unknown is 567 

31 .  For all parameter combinations shown, the cumulative probability is greater than 50% in 568 

in the marginal and restricted likelihood approaches when σε is known, but can drop below 50% 569 

in the penalized likelihood approach and in the marginal and restricted likelihood approaches 570 

when σε is unknown if nobs is sufficiently low and β is sufficiently high.   571 

Figures 4d and 4e are structured similarly to Figures 4b and 4c, except that they show the 572 

means of the respective distributions rather than cumulative probabilities.  All of the estimators 573 

are asymptotically unbiased as nobs approaches infinity and β approaches zero.  When σε is 574 

unknown, all of the estimators can exhibit substantial biases (in part because low values of σδ 575 
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can result in false negatives), but the penalized likelihood estimator is more biased than the 576 

others except at very low values of nobs (e.g.,<10) or high values of β (e.g., >~0.4), as might be 577 

anticipated from Eqs. (11.2) and (12.2).  When σε is known, unless nobs is very low (e.g.,<10), 578 

the marginal likelihood estimator is biased just slightly low and the restricted likelihood 579 

estimator is essentially unbiased, whereas the penalized likelihood estimator can exhibit 580 

substantial biases. 581 

7. Discussion 582 

7.1. The problem of bias in the penalized likelihood approach 583 

Fournier and Archibald (1982, especially their Eq. (5.3)) may have been the first to use a 584 

penalized likelihood approach in a fishery stock assessment context.  Although a negative bias in 585 

the penalized likelihood estimate of the variance of random effects was noted in the statistics 586 

literature as early as Patterson and Thompson (1974), this bias does not seem to have been 587 

widely appreciated in the stock assessment literature for the first couple of decades or so 588 

following Fournier and Archibald (1982).   589 

Maunder and Deriso (2003) gave the first systematic treatment of the (univariate) 590 

problem in the stock assessment literature.  They presented a simulated example (their Figure 8) 591 

of a penalized negative log likelihood profile with a global minimum at zero, a local maximum, 592 

and a local minimum that was above the local maximum but below the marginal likelihood 593 

estimate.  Apart from a change of sign, this is qualitatively identical to Eq. (6.2), which is 594 

illustrated for two example sets of parameter values in Figure 5 (nobs = 10, v0(yobs) = 1, and σε 595 

= 0.40 or 0.49).  Depending on parameter values, σδpen can be fairly close to σδmar (e.g., it is 596 

only 13% low for the σε = 0.40 example in Figure 5; best-case scenario is zero bias as the ratio 597 

σε 2/v0(yobs) approaches zero), or the bias can be fairly substantial (e.g., 31% low for the σε = 598 
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0.49 example in Figure 5; worst-case scenario is %42311 ≈−  low as the ratio σε 2/v0(yobs) 599 

approaches ¼). 600 

Whether the (biased) penalized likelihood estimator is “good enough” will depend on 601 

parameter values, on the difficulty of computing a less biased estimator such as σδmar or σδres, 602 

and on how the assessment author or assessment reviewers perceive the relative risks of 603 

overparameterization versus underparameterization (see next section).  In any case, it should be 604 

emphasized that, while the penalized likelihood estimator is biased, it is surely preferable to the 605 

common alternative of simply guessing at the appropriate value(s). 606 

7.2. The problem of over/underparameterization 607 

From a purely semantic perspective, there is no obvious reason to prefer 608 

overparameterization to underparameterization or vice-versa; both sound like something to be 609 

avoided, and it is not immediately obvious which is worse.  In linear regression theory, there is a 610 

clear tradeoff:  Overparameterized models have unbiased but imprecise estimates, while 611 

underparameterized models have biased but precise estimates; and either outcome could be 612 

preferred in a particular context.  In the world of fishery stock assessment, however, the weight 613 

of opinion seems heavily tilted toward the view that overparameterization is the greater of the 614 

two evils.  For example, a Google Scholar search (conducted May 12, 2015) on “stock 615 

assessment” and either “overparameterized or “overparameterization” returned 336 results, while 616 

a Google Scholar search on “stock assessment” and either “underparameterized” or 617 

“underparameterization” returned only 12 results, for a ratio of 28:1.  Ludwig and Walters 618 

(1985), Walters (1997), Helu et al. (2000), Walters and Martell (2002), and Hulson and 619 

Hanselman (2014) are among those who have discussed the problem of overparameterization.   620 
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However, some recent papers have favored including more time-variability than is 621 

currently customary in stock assessments.  For example, Wilberg and Bence (2006), Wilberg et 622 

al. (2010), and Martell and Stewart (2014) concluded that underparameterization can typically be 623 

expected to present greater problems than overparameterization, at least where catchability and 624 

selectivity are concerned.  Nevertheless, many reviewers of stock assessments, for whatever 625 

reason(s), seem to prefer a bias toward underparameterization relative to overparameterization.  626 

When developing assessments for such reviewers, the penalized likelihood approach’s small 627 

probability of obtaining a false positive and relatively high probability of obtaining a false 628 

negative may be considered advantages of that approach. 629 

Although the distributions of the closed-form univariate estimators give less (sometimes 630 

much less) than a 50% chance of a false positive, the iterative algorithms for the multivariate 631 

case will always result in false positives whenever the number of parameters with random effects 632 

has been overestimated (i.e., whenever the modeler has allowed random effects to be estimated 633 

for more parameters than in the “true” model).  However, personal experience to date suggests 634 

that the average estimated standard deviations for the parameters with false positives will 635 

typically be a small fraction of the average estimated standard deviations for the parameters that 636 

truly do exhibit random effects, a phenomenon which might have potential for use as a 637 

diagnostic of overparameterization (i.e., parameters whose random effects end up with very 638 

small estimated standard deviations can simply be assumed constant).  Along similar lines, when 639 

applying Algorithms 4 and 5 in the multivariate case, personal experience to date suggests that 640 

slow convergence may also be a useful diagnostic of overparameterization. 641 
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7.3. The problem of nonlinearity/non-normality 642 

Although the methods described here have all been discussed in the context of the linear-643 

normal model, some of them may be extendable to other (nonlinear or non-normal) models 644 

(Table 2).  Specifically, the methods that are most likely to be candidates for extension to other 645 

models, conditional on approach, are as follow: 646 

• Numeric maximization:  This method is probably practical for the penalized likelihood 647 

approach only.  Closed-form expressions for the marginal and restricted likelihood 648 

approaches in other models are likely unobtainable.  An alternative might be to derive the 649 

marginal or restricted likelihoods by the Markov chain Monte Carlo method, conditional 650 

on user-specified values for the variances of the random effects, then repeat the process 651 

enough times to obtain an accurate multivariate profile over appropriate ranges and 652 

combinations of those variances.  However, this alternative would be tedious at best, 653 

unless the number of parameters exhibiting random effects is very small. 654 

• Iteration:  This method is potentially extendable for any of the three approaches.  A 655 

possible concern with iterative methods in general is sensitivity to initial values, although 656 

the demonstrable convergence of Algorithm 1 for the univariate case is a hopeful sign. 657 

• Laplace approximation:  This method is potentially extendable for the marginal 658 

likelihood and restricted likelihood approaches (it does not apply to the penalized 659 

likelihood approach).  In principle, Laplace approximation could be used for models with 660 

any number of dimensions.  However, this is likely to prove tedious for more than 2-3 661 

dimensions (Thorson et al. 2015). 662 

• Reverse-engineered variances:  This method is potentially extendable for the marginal 663 

likelihood and restricted likelihood approaches (use of this method for the penalized 664 
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likelihood approach is redundant, because it already involves an estimate of σδpen 665 

(obtained by iteration)).  Note that this method was derived specifically for the univariate 666 

case.  However, it can be applied in the multivariate case by assuming 667 

ρδ=z(ndim×(ndim−1)/2) and by applying it to each element of the σδ vector individually.  668 

Thompson and Lauth (2012) and (e.g., Lowe et al. 2014) provide examples where this 669 

method has already been extended to nonlinear/non-normal stock assessment models. 670 

When dealing with nonlinear/non-normal models, it might be advisable to try more than 671 

one method.  Although all of the methods presented here work for the linear-normal model, some 672 

might work better than others in nonlinear/non-normal models.  If one method fails, having 673 

others available to try is convenient. 674 

As noted in section 7.1, Eq. 6.2 has the same general shape (see Figure 5) as that obtained 675 

by Maunder and Deriso (2003) for a nonlinear/non-normal model, which is a hopeful sign that at 676 

least some results for the linear-normal model may be extendable to other models. 677 

When undertaking step #1 of Algorithms 6.2 or 7.2 in a nonlinear/non-normal model, it 678 

may take several tries to find a value of σδ sufficiently high that it does not constrain the annual 679 

deviations but not so high that the solution fails to converge properly (note that as σδ increases, 680 

the number of “effective” parameters increases also).  It is probably best to start with a 681 

reasonably low value of σδ and then increase it gradually.  Because of the way that some 682 

functions are parameterized in common assessment software packages (e.g., the double normal 683 

selectivity function in Stock Synthesis, Methot and Wetzel 2013), it is also possible that one or 684 

more annual deviations may “want” to go to +/− ∞.  To minimize the impact of such extreme 685 
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non-normality, such “outlier” deviations should probably not be considered when making the 686 

determination that σδ is no longer constraining the deviations.   687 

7.4. The problem of assuming zero correlations 688 

As noted in the preceding section, extension of the methods based on reverse-engineered 689 

variances to multivariate models requires assuming ρδ=z(ndim×(ndim−1)/2); that is, an 690 

assumption that the various vectors of deviations (in the multivariate case) are uncorrelated.  In 691 

practice, this assumption is almost always made in stock assessment models.  Exceptions include 692 

a pair of state-space stock assessment models: 1) Gudmundsson (1994) allowed for correlations 693 

between vectors of deviations, but noted that they will almost always have to be pre-specified; 694 

and 2) Nielsen and Berg (2014) allowed for correlations between annual vectors of age-specific 695 

fishing mortality rates, but required all of those correlations either to have the same value or to 696 

follow the process ln(ρ)⋅|age1−age2| for each {age1,age2} pair.  Of course, assuming all 697 

correlations to be zero is parsimonious, in that it saves estimation of ndim×(ndim−1)/2 698 

parameters, which again will please stock assessment reviewers with a strong aversion to 699 

overparameterization.  However, the consequences of doing so, with respect to model accuracy 700 

or predictive ability, do not appear to have been thoroughly addressed in the literature on stock 701 

assessment models based on penalized likelihood.  This is an area that merits further study. 702 
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Algorithm 1: 

1. Set σδ and ρδ equal to the values corresponding to V0(Yobs). 

2. For k=1,2,…,nobs, set δk=δpen(σδ,ρδ)k. 

3. Set σδ and ρδ equal to the values that give Σδ(σδ,ρδ)=V0(∆). 

4. Return to step 2 and repeat until σδ and ρδ converge.   

Algorithm 2.1: 

1. Set Σδ equal to V0(Yobs). 

2. Set  . 

3. Return to step 2 and repeat until Σδ converges. 

4. Set σδ and ρδ equal to the values corresponding to the converged value of Σδ.   

Algorithm 3.1: 

1. Create a Hamiltonian matrix . 

2. Compute the eigenvalues and the eigenvector matrix associated with the Hamiltonian. 

3. Form a 2⋅ndim×ndim matrix Ψ consisting of those columns of the eigenvector matrix 

that correspond to positive eigenvalues. 

4. Create a matrix Ψ1 consisting of the first ndim rows of Ψ and another matrix Ψ2 

consisting of the second ndim rows of Ψ. 

5. Compute Σδ=Ψ2⋅Ψ1−1. 

6. Set σδ and ρδ equal to the values corresponding to Σδ.     
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Algorithm 4: 

1. Set σδ and ρδ at the values corresponding to V0(Yobs). 

2. Set . 

3. Set σδ and ρδ at the values corresponding to Σδ. 

4. Return to step 2 and repeat until the solution converges.    

Algorithm 5: 

1. Set σδ and ρδ at the values corresponding to V0(Yobs). 

2. Set  . 

3. Set σδ and ρδ at the values corresponding to Σδ. 

4. Return to step 2 and repeat until the solution converges.    
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Algorithm 6.2: 

1. Set σδ at a value high enough that δ is essentially unconstrained by σδ. 

2. Estimate δ by maximizing the penalized log likelihood conditional on σδ. 

3. Set v0(yobs) = v0(δ).   

4. Estimate σδpen by the univariate special case of Algorithm 1. 

5. Given these estimates of v0(yobs) and σδpen, estimate σε by Eq. (16.2). 

6. Given these estimates of v0(yobs) and σε, estimate σδmar by Eq. (12.2). 

Algorithm 7.2: 

1. Set σδ at a value high enough that δ is essentially unconstrained by σδ. 

2. Estimate δ by maximizing the penalized log likelihood conditional on σδ. 

3. Set v0(yobs) = v0(δ) and v1(yobs) = v1(δ) 

4. Estimate σδpen by the univariate special case of Algorithm 1. 

5. Given these estimates of v0(yobs) and σδpen, estimate σε by Eq. (16.2). 

6. Given these estimates of v1(yobs) and σε, estimate σδres by Eq. (13.2). 
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Table 1a.  List of Roman symbols used. 885 

Symbol Definition 
a distribution of false positive estimates 
b distribution of estimates other than false negatives 
c multiplier applied to σε 2 
d degrees of freedom in χ 2  distribution 
fmul multivariate normal density 
funi univariate normal density 
false_neg probability of obtaining a false negative 
false_pos probability of obtaining a false positive 
g χ2 cumulative distribution function 
h constant used in denominator of variance 
I(n) n×n identity matrix 
i generic index 
j generic index 
k observation index 
Likjnt joint likelihood 
likmar marginal likelihood 
likpen penalized likelihood 
likpro penalized likelihood profile 
likres restricted (residual) likelihood 
m vector of  row means of a matrix 
m scalar mean of a vector 
n generic sample size 
ndim number of dimensions 
nfac number of factors 
nobs number of observations 
pen penalty function 
q a function used in a 
r another function used in a 
s a function used in b 
t another function used in b 
uδ ratio of univariate estimate (given a chosen estimator) to σε 
uε ratio of univariate estimate (given a chosen estimator) to σδ 
Vh row-wise covariance matrix of an n-column matrix, with denominator n−h 
vh scalar variance of an n×1 vector, with denominator n−h 
w, w, W generic variable 
xi,j , xi , X factor(s) 
yi,j , yi , Y randomly time-varying variable(s) of interest 
yobsi,j , yobsi , Yobs observed values of Y 
yvec columns of Y stacked in a single vector 
z(n) n×1 vector of zeros 
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Table 1b.  List of Greek symbols used. 886 

Symbol Definition 
α bias adjustment (=1−m(b) in Methot and Taylor (2011)) 
β ratio of σε to σδ 
∆ ndim×nobs matrix of time-varying deviations (process errors) 
δk ndim×1 vector of deviations in year k (i.e., column k of ∆) 
εk ndim×1 vector of observation errors in year k 
Φ1 a submatrix used to compute the Hamiltonian in the Riccati approach 
Φ2 a second submatrix used to compute the Hamiltonian in the Riccati approach 
Φ3 a third submatrix used to compute the Hamiltonian in the Riccati approach 
Γ Euler's gamma function 
η scalar multiplier 
Λran Hessian matrix when only random effects are included 
Λmix Hessian matrix when mixed (both random and fixed) effects are included 
µy mean of y vector 
Θ matrix used to compute vector of first (nobs-1)×ndim residuals 
π pi (3.14159…) 
ρδ vector of correlation coefficients implicit in Σδ 
Σδ covariance matrix of deviations (process errors) 
σδ vector of standard deviations implicit in Σδ 
Σε covariance matrix of observation errors 
Ω nfac×ndim slope matrix used to convert x to y 
Ξ matrix used to compute covariance matrix of first (nobs-1)×ndim residuals 
Ψ 2⋅ndim×ndim matrix of eigenvectors used in the Riccati approach 
Ψ1 first ndim rows of Ψ 
Ψ2 second ndim rows of Ψ 
ζ ndim×1 intercept vector used to convert x to y 

 887 

  888 
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Table 2.  List of methods for each of the three approaches and three cases.  An arrow indicates 889 

that the algorithm or equation on the left also applies to the cases spanned by the arrow.  A blank 890 

cell indicates that the method does not apply to the given approach/case.  For the numeric 891 

maximization methods, the “No” entry under “Extendable to other models?” indicates that such 892 

extensions would typically be at least very tedious. 893 

Penalized likelihood approach:  
Linear-normal model case 

Extendable to 
other models? Method 

Multivariate, 
variable Σε 

Multivariate, 
constant Σε 

Univariate, 
constant σε 

Numeric maximization Eq. (6) Eq. (6.1) Eq. (6.2) Yes 
Iteration Algorithm 1  Yes 
Recursion Algorithm 2.1 

 

No 
Closed form Algorithm 3.1 Eq. (11.2) No 
Laplace approximation   
Reverse-engineered variances       

Marginal likelihood approach: 
Linear-normal model case 

Extendable to 
other models? Method 

Multivariate, 
variable Σε 

Multivariate, 
constant Σε 

Univariate, 
constant σε 

Numeric maximization Eq. (7) Eq. (7.1) Eq. (7.2) No 
Iteration Algorithm 4 

 

Yes 
Recursion   
Closed form Eq. (12.1) Eq. (12.2) No 
Laplace approximation Eq. (14) 

 

Yes 
Reverse-engineered variances     Algorithm 6.2 Yes 

Restricted likelihood approach: 
Linear-normal model case 

Extendable to 
other models? Method 

Multivariate, 
variable Σε 

Multivariate, 
constant Σε 

Univariate, 
constant σε 

Numeric maximization Eq. (8) Eq. (8.1) Eq. (8.2) No 
Iteration Algorithm 5 

 

Yes 
Recursion   
Closed form Eq. (13.1) Eq. (13.2) No 
Laplace approximation Eq. (15)  Yes 
Reverse-engineered variances     Algorithm 7.2  Yes 

  894 
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Figures 895 

Figure 1.  Probability of obtaining a false positive.  Blue squares: penalized, red diamonds: 896 

marginal, green triangles: restricted. 897 

Figure 2a.  Probability of obtaining a false negative as a function of β.  Blue squares: nobs=10, 898 

red diamonds: nobs=20, green triangles: nobs=30, purple circles: nobs=40.  Upper panel: 899 

penalized, middle panel: marginal, lower panel: restricted. 900 

Figure 2b.  Probability of obtaining a false negative as a function of nobs.  Blue squares: β=0.1, 901 

red diamonds: β=0.2, green triangles: β=0.3, purple circles: β=0.4.  Upper panel: penalized, 902 

middle panel: marginal, lower panel: restricted. 903 

Figure 3a.  Probability density functions a1 and a2.  Blue squares: nobs=10, red diamonds: 904 

nobs=20, green triangles: nobs=30, purple circles: nobs=40.  Upper panels: penalized, middle 905 

panels: marginal, lower panels: restricted.  Left column: σε reverse-engineered, right column: σε 906 

known. 907 

Figure 3b.  Upper panel: probability of u<1 under pdfs a1 and a2.  Lower panel: Means of pdfs a1 908 

and a2.  Blue squares: penalized, red diamonds: marginal, green triangles: restricted.  Dashed 909 

curves: σε reverse-engineered, solid curves: σε known (curves for the penalized approach are the 910 

same for both σε reverse-engineered and σε known). 911 

Figure 4a.  Probability density functions b1 and b2.  Blue squares: {nobs=10, β=0.2}, red 912 

diamonds: {nobs=10, β=0.4}, green triangles: {nobs=20, β=0.2}, purple circles: {nobs=20, 913 

β=0.4}.  Top panels: penalized, middle panels: marginal, bottom panels: restricted.  Left column: 914 

σε reverse-engineered, right column: σε known. 915 
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Figure 4b.  Probability of u<1 in pdfs b1 and b2 as a function of β.  Blue squares: nobs=10, red 916 

diamonds: nobs=20, green triangles: nobs=30, purple circles: nobs=40.  Upper panels: penalized, 917 

middle panels: marginal, lower panels: restricted.  Left column: σε reverse-engineered, right 918 

column: σε known. 919 

Figure 4c.  Probability of u<1 in pdfs b1 and b2 as a function of nobs.  Blue squares: β=0.1, red 920 

diamonds: β=0.2, green triangles: β=0.3, purple circles: β=0.4.  Upper panels: penalized, middle 921 

panels: marginal, lower panels: restricted.  Left column: σε reverse-engineered, right column: σε 922 

known. 923 

Figure 4d.  Means of pdfs b1 and b2 as a function of β.  Blue squares: nobs=10, red diamonds: 924 

nobs=20, green triangles: nobs=30, purple circles: nobs=40.  Upper panels: penalized, middle 925 

panels: marginal, lower panels: restricted.  Left column: σε reverse-engineered, right column: σε 926 

known. 927 

Figure 4e.  Means of pdfs b1 and b2 as a function of nobs.  Blue squares: β=0.1, red diamonds: 928 

β=0.2, green triangles: β=0.3, purple circles: β=0.4.  Upper panels: penalized, middle panels: 929 

marginal, lower panels: restricted.  Left column: σε reverse-engineered, right column: σε known. 930 

Figure 5.  Two examples of the penalized log likelihood profile for the univariate case with 931 

constant σε.  Parameter values: nobs = 10, v0(yobs) = 1, and σε = 0.40 (blue curve with squares) 932 

or 0.49 (red curve with diamonds).  For each value of σε, the dotted vertical line corresponds to 933 

the local minimum, the dashed vertical line corresponds to the local maximum (σδpen), and the 934 

solid vertical line corresponds to the marginal likelihood estimate (σδmar).  935 
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Figure 2a. 939 
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Figure 2b.  941 
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Figure 3a.  943 
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Figure 3b.  946 
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Figure 4a.  948 
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Figure 4b. 950 
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Figure 4c.  952 
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Figure 4d.  954 
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Figure 4e. 956 
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Figure 5. 958 
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